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Dimensionality Reduction for
Useful Display of Hyperspectral Images
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Abstract— To display hyperspectral images for human analysis,
high-dimensional spectral data must be converted into a three
band RGB image. Ideally, images for human analysis should
be easy to interpret and supply useful visual information about
the scene content. In an effort to explore non-linear methods
of dimensionality reduction for the useful display of hyper-
spectral images, I compare and contrast results using k-nearest
neighbors, artificial neural networks, and a novel probabilistic
overlay technique. The methods are applied to several AVIRIS
airborne hyperspectral images and results are compared using
both quantitative and qualitative measures. All methods allow
a user to specify a desired artificial color for endmembers of
interest and the processed images use visual cues to indicate the
probabilities that the endmembers exist in the scene. The results
indicate that the newly proposed probabilistic overlay technique
(when combined with a suitable classifier) outperforms the other
methods and is a reasonable, intuitive, and efficient method for
converting hyperspectral images into easily interpretable RGB
images with useful endmember highlighting.

I. INTRODUCTION

HYPERSPECTRAL images contain far more spectral
information than can be displayed with a standard RGB

monitor or printer. So the display of these images presents an
interesting challenge. A number of different linear methods
have already been proposed and implemented for useful di-
mensionality reduction of hyperspectral images.[1][3][6][8][9]
Jacobson and Gupta, for example, used fixed linear spectral
weighting envelopes to create natural looking imagery while
still maximizing usefulness for human analysis.[1]

In my work, I extended this concept by looking at non-
linear methods of dimensionality reduction that could augment
the established linear methods and both create natural looking
imagery and allow the user to specify desired highlighting
colors for spectral endmembers-of-interest.

There are a number of benefits to using non-linear methods
of dimensionality reduction for hyperspectral display. First,
non-linear methods will allow a designer to indicate desired
colors for endmembers of interest. Spectral information for
endmembers can be taken from libraries or (as in this paper)
hand selected from known regions in an image. In other words,
a user could specify that she wants water to be blue, concrete
to be red, and everything else in the image to look natural.

Non-linear methods would also have the benefit that the
intensity of the artificial endmember colors could be used
to indicate the probability that endmembers-of-interest exist

in the scene. For example, saturated blue could indicate a
high probability of water while faint red could indicate a low
probability of concrete.

II. GOALS FOR HYPERSPECTRAL IMAGE VISUALIZATION

A quantitative and qualitative analysis of hyperspectral
display methods requires that we first establish our design
goals. I propose the following design goals for displaying
hyperspectral imagery with visual cues about endmember
probabilities.

1) Natural colors: Processed images should look natural
to the human eye and should not require extensive
training for analysis. For example, trees should not
look pink and water should not look yellow. Instead,
the contents of a hyperspectral scene should be easy to
interpret and color assignments should be intuitive.

2) Natural contours: Edges should be preserved in
processed images and false contours should not be
introduced during processing.

3) Highlighting of target endmembers: A designer
should be able to specify desired artificial colors for
target endmembers, and the saturation level of those
artificial colors should indicate the probability of the
endmember existing in the scene. Also, endmember
highlighting should perform gracefully when numerous
classes have high probabilities for the same pixel.

4) Portability: The training data should not be image
specific. Rather, the transformation should perform well
for any hyperspectral image.

5) Computational ease: The conversion from hyperspec-
tral space to RGB space should be quick, enabling
real-time interactivity. Also, conversion time should not
increase when the training sample size increases.

III. TRAINING DATA

K-nearest neighbors and artificial neural networks are super-
vised learning and regression techniques, which require train-
ing data to indicate desired color mappings from hyperspectral
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space to RGB space. Thus a first task for these methods is to
generate training data.

For this paper I developed a user interface tool in MATLAB
that allows a designer to assign artificial colors to hand-
selected regions in an image. The hyperspectral pixels in each
region serve as example spectra for each class.

Fig. 1. Screenshot of the GUI used by the designer to specify regions of
interest and assign them artificial colors.

Once the user has selected regions and assigned them artifi-
cial colors, the program automatically selects a few thousand
random pixels to act as training data for natural RGB values.
Essentially we want pixels of our known classes to be assigned
designer artificial colors and we want all other pixels in the
image to look natural. The randomly selected natural RGB
training points are only used as training points if they are far
enough in angle space from every pixel in the user selected
regions.

More formally, a hyperspectral pixel ~x will only be used as
a natural RGB training point if

min
i

(
acos

(
~x · ~yi

‖~x‖‖~yi‖

))
> threshold, (1)

where ~yi are all the pixels in the user selected regions.
Each of these natural training points ~xi are then assigned an

RGB value using either the stretched-CMF linear projection[1]
or by simply using the three bands that are closest to red, blue
and green wavelengths respectively.

Fig. 2. Example of user selected regions with desired artificial colors
assigned.

Fig. 3. Map showing the points in the image that were used as training data.
Note that there are a couple hundred user selected pixels for each endmember
class and five thousand randomly selected pixels for natural RGB training.

IV. ANALYSIS METRICS

Keeping in mind the objectives for hyperspectral image
display described in section II, I will use the following metrics
for comparing the results of each method.

Quantitative: The mean squared error between the training
data and the processed image will be used as a quantitative
metric for the performance of each method. Also the process-
ing time required for each method will be used to compare
computational ease.

Qualitative: We will judge the quality of our processed
images by checking that:

1) colors look natural and are easy to interpret,
2) no artificial contours or colors have appeared,
3) target endmembers are highlighted
4) saturation levels of artificial colors indicate probabilities

that endmembers exist in a given pixel, and
5) the method performs well when applied to a diverse set

of hyperspectral images.
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V. K-NEAREST NEIGHBOR METHOD

The first method I applied was an exponentially decaying
k-nearest neighbor (KNN) regression technique. I defined the
distance between any two hyperspectral pixels as the angle
they form in hyper-space:

D(~x, ~yi) = acos

(
~x · ~yi

‖~x‖‖~yi‖

)
. (2)

For every pixel in an image, I simply find the k nearest
training points in the training set and then generate an output
color in LAB space by combining the training output values
with exponentially decaying weights.

For the testing described in this paper, the number of
neighbors k was varied from 1 to 50 and resulting images
are shown in tables I and II.

We see from the results that qualitativly, KNN performs
poorly. When K = 1 we have overfit our data, and as K
increases the image becomes washed out. This is because the
only allowable output colors are linear combinations of the
training data colors. Although we have not introduced any false
contours, we have lost a large portion of the distinguishing
features in our image. Another problem with KNN is that it
does not pass the portability test. When the training data is
used to process a new image (see table II) we cannot resolve
any new colors because we can only make linear combinations
of our training data.

Lastly, KNN has the significant drawback that it is ex-
tremely computationally intensive. Analyzing a single image
can take hours. And as the training set is increased the
processing time will increase exponentially.

VI. ARTIFICIAL NEURAL NETWORK METHOD

Artificial neural networks were also applied to the task of
dimensionality reduction. Using the same training data as was
used for the KNN method, a neural-net with a single hidden
layer (10 nodes) was trained to convert 219 band hyperspectral
data into the desired RGB values.

Results for this method are shown in table III. Note that the
neural net performs much better than KNN. The target end-
member classes are highlighted with the appropriate artificial
colors and the rest of the image pixels look natural. Contours
are preserved and the image is intuitive and easy to interpret.

Another benefit of the neural network method is its ease of
computation. Although training the network can take hours, a
single image can be processed in less than a second, making
it reasonable to use this method for real-time analysis.

However, one major drawback of this method is that it is
difficult to predict how the net will handle new spectral inputs.
As can be seen in table III, there is a fair amount of green
introduced into our processed image. Since our training colors
are only red and blue, the color green is impossible for a
human viewer to interpret.

So we see that the neural net performs better than KNN,
but it fails one of our quality metrics because it introduces
unnatural colors that are not easy to interpret.

Fig. 4. Mean squared error comparison for each method.

VII. PROBABILISTIC OVERLAY METHOD

The false color problem of the neural net method motivated
me to consider a new technique for hyperspectral image
display. Rather than using a neural net to both make a soft
classification and assign output colors, I tried using the neural
net to only detect the probability of each class. I then used
those probabilities and the user selected artificial colors to
generate an overlay map that could finally be combined with
the natural looking RGB image.

More formally, for a given hyperspectral pixel ~x we can
generate an overlay color ~coverlay using the following equa-
tion:

~coverlay =
∑

i

(
Pi∑
Pi

~ci

)
(3)

where Pi is the probability that ~x is an endmember of class
i with the associated artificial color ~ci.

We can then generate our output color ~cout by combining
the overlay color with the natural RGB value ~cnatural using
the following equation:

~cout = (1 − max
i

(Pi))~cnatural + max
i

(Pi)~coverlay (4)

where we generated ~cnatural using either the stretched-CMF
linear projection[1] or by simply using the three bands that are
closest to the red, blue and green wavelengths respectively.

Results for this probabilistic overlay method are shown
in tables IV and V. Note that the resulting images have all
the benefits of the neural net method with the added benefit
that there are never any colors that are not either naturally
occurring or a linear combination of the user selected artificial
colors.

Table V suggests that the overlay method will perform
well even when there are a large number possible endmember
classes of interest.

VIII. ANALYSIS AND CONCLUSIONS

Figure 4 shows the mean squared errors for KNN, neural
nets, and the overlay technique. We can see conclusively
that the probabilistic overlay method is both qualitatively and
quantitatively better than the other two methods.

It should also be noted that the overlay method could be
used in combination with any hyperspectral classifier [5], not
just the basic neural-net that was used in this work.



4

K=1 K=10 K=50

TABLE I
RESULTS WHEN K NEAREST NEIGHBOR METHOD IS APPLIED TO THE SAME HYPERSPECTRAL IMAGE IT WAS TRAINED ON.

K=1 K=10 K=50

TABLE II
RESULTS WHEN K NEAREST NEIGHBOR METHOD IS APPLIED TO AN ALTERNATE IMAGE THAT DOES NOT CONTAIN ANY OF THE TRAINING POINTS.
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TABLE III
RESULTS WHEN NEURAL NETWORK METHOD IS APPLIED TO A SERIES OF HYPERSPECTRAL IMAGES. NOTE THAT ONLY THE FIRST IMAGE CONTAINS

PIXEL VALUES THAT WERE USED DURING THE TRAINING OF THE NET.
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TABLE IV
RESULTS WHEN THE OVERLAY METHOD IS APPLIED TO A SERIES OF HYPERSPECTRAL IMAGES WITH 2 TARGET ENDMEMBER CLASSES. NOTE THAT ONLY

THE FIRST IMAGE CONTAINS PIXEL VALUES THAT WERE USED DURING THE TRAINING OF THE NET.
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TABLE V
RESULTS WHEN THE OVERLAY METHOD IS APPLIED TO A SERIES OF HYPERSPECTRAL IMAGES WITH 5 TARGET ENDMEMBER CLASSES.
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